

Seventh Semester B.E. Degree Examination, June/July 2013 Control Engineering

Time: 3 hrs. Max. Marks: 100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART – A

- 1 a. Define control system. Compare open loop and closed loop control system with 2 examples for each type. (06 Marks)
 - b. Explain and draw the block diagram of proportional integral controller. (04 Marks)
 - c. Explain the concept of feed back control system and the requirement of an ideal control system.

 (10 Marks)
- 2 a. Draw the equivalent mechanical system of the given system shown in Fig. Q2 (a). Hence write the set of equilibrium equations for it and obtain electrical analogous circuits using,
 - i) F-V analog
 - ii) F-I analog

(10 Marks)

Fig. Q2 (a)

- b. Derive the transfer function for an armature controlled dc motor. The field current is maintained constant during operation. Assume that the armature coil has back emf $E_b = K_b \frac{d\theta}{dt}$ and the coil current produces a torque T = KmI on the rotor, K_b and K_n are the back emf constant and motor torque constant respectively. (10 Marks)
- 3 a. Reduce the block diagram shown in Fig. Q3 (a) to its simplest possible form and find its closed loop transfer function. (10 Marks)

Fig. Q3 (a)

3 b. Using Mason's gain formula, find the gain of the following system shown in Fig. Q3 (b).
(10 Marks)

Fig. Q3 (b)

- 4 a. Explain Routh-Hurwitz criterion for stability of a control system and examine the stability of $s^4 + 2s^3 + 3s^2 + 8s + 2 = 0$ using the same. (10 Marks)
 - b. Define: i) time response
- ii) transient response
- iii) steady state response
- (10 Marks)

PART – B

- 5 Sketch the Nyquist plot for system with, $G(s)H(s) = \frac{(1+0.5s)}{s^2(1+0.1s)(1+0.02s)}$. Comment on the stability. (20 Marks)
- 6 Sketch the Bode plot and determine the gain cross over and phase-cross over frequencies, $C(s) = \frac{10}{s(1+0.5s)(1+0.1s)}.$ (20 Marks)
- 7 Sketch the complete root locus of system having,

iv) steady state error.

$$G(s)H(s) = \frac{K}{s(s+1)(s+2)(s+3)}$$
 (20 Marks)

- **8** Write a note on with examples:
 - a. Lag compensator
 - b. Lead compensator.

(20 Marks)

* * * * *